Project 2

Gender Wage Gaps in Norway, Peru, France and Greece.

Read the data from part 1

gender_gap_in_average_wages_ilo <- 
  read_csv(here::here("~/Documents/bus320/_posts/2022-05-10-project-part-1/gender-gap-in-average-wages-ilo.csv")) %>% 
  rename(genderwagegap= 4) %>% 
  filter(Entity %in% c("Norway", "Peru", "France", "Greece"))

Ineractive graph

gender_gap_in_average_wages_ilo %>% 
  group_by(Entity) %>% 
  mutate(genderwagegap = round(genderwagegap, 1),
         Year = paste(Year, "12", "31", sep="-")) %>% 
  e_charts(x= Year) %>%
  e_river(serie = genderwagegap, legend = FALSE) %>% 
  e_tooltip(trigger = "axis") %>% 
  e_title(text = "Gender wage gap, by world entity" ) %>% 
e_theme("roma")

static graph

start with data

gender_gap_in_average_wages_ilo %>% 
  group_by(Entity) %>%
  ggplot(aes(x = Year, y = genderwagegap,
            fill = Entity )) +
  geom_area()+
 theme_classic() +
theme(legend.position = "bottom") + 
  labs(y = "in thousands of dollars",
       fill = NULL)

ggsave(filename = here::here("_posts/2022-05-17-project-2/preview.png"))