Gender Wage Gaps in Norway, Peru, France and Greece.
Read the data from part 1
gender_gap_in_average_wages_ilo <-
read_csv(here::here("~/Documents/bus320/_posts/2022-05-10-project-part-1/gender-gap-in-average-wages-ilo.csv")) %>%
rename(genderwagegap= 4) %>%
filter(Entity %in% c("Norway", "Peru", "France", "Greece"))
gender_gap_in_average_wages_ilo %>%
group_by(Entity) %>%
mutate(genderwagegap = round(genderwagegap, 1),
Year = paste(Year, "12", "31", sep="-")) %>%
e_charts(x= Year) %>%
e_river(serie = genderwagegap, legend = FALSE) %>%
e_tooltip(trigger = "axis") %>%
e_title(text = "Gender wage gap, by world entity" ) %>%
e_theme("roma")
start with data
gender_gap_in_average_wages_ilo %>%
group_by(Entity) %>%
ggplot(aes(x = Year, y = genderwagegap,
fill = Entity )) +
geom_area()+
theme_classic() +
theme(legend.position = "bottom") +
labs(y = "in thousands of dollars",
fill = NULL)